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University, Canberra, Australia, and cÉcole Normale Supérieure, Paris, France. Correspondence

e-mail: mdsikir@irb.hr

A Frank–Kasper structure is a 3-periodic tiling of the Euclidean space E3 by

tetrahedra such that the vertex figure of any vertex belongs to four specified

patterns with, respectively, 20, 24, 26 and 28 faces. Frank–Kasper structures

occur in the crystallography of metallic alloys and clathrates. A new computer

enumeration method has been devised for obtaining Frank–Kasper structures of

up to 20 cells in a reduced fundamental domain. Here, the 84 obtained structures

have been compared with the known 27 physical structures and the known

special constructions by Frank–Kasper–Sullivan, Shoemaker–Shoemaker,

Sadoc–Mosseri and Deza–Shtogrin.

1. Introduction

A tiling is a partition of Euclidean space E3 into tiles, i.e.

interiors of cages (generalized polyhedra with, possibly,

2-valent vertices, topologically equivalent to a sphere). Faces

of tiles have vertices and edges but are not necessarily

contained in an affine plane. A tiling is face-to-face if each face

belongs to exactly two tiles; it is normal if the intersection of

any two cages is a face, edge, point or ;. A tiling is simple if

four tiles meet at each vertex; tilings can be simple only if the

polyhedra are 3-valent. A tiling T is 3-periodic (or crystal-

lographic) if AutðTÞ contains translations in three non-

coplanar directions.

A fullerene (Fowler & Manolopoulos, 1995) Fn is a poly-

hedron with n, all of degree 3, vertices and only 5-gonal and

6-gonal faces. So, p5 = 12 and p6 = ðn=2Þ � 10 for the number of

faces. Fn exist for all even n � 20, except 22. The number of

n-vertex fullerenes is 1, 1, 1, 2 for n = 20, 24, 26, 28, and it

grows as n9 (Thurston, 1998).

The Frank–Kasper polyhedra are all (four) fullerenes with

isolated hexagons: unique ones F20, F24, F26 and one of two F28,

with symmetry AutðFnÞ = Ih;D6d;D3h;Td, respectively (see

Fig. 1). Crystallographers usually consider their duals as the

coordination polyhedra with 6-valent vertices being possible

disclinations of the local icosahedral order. These duals are

called Frank–Kasper deltahedra and denoted by Z12, Z14, Z15

and Z16 or X, R, Q and P, respectively. Also, F24 is a dual

bicapped hexagonal antiprism, while F28 is a dual tetracapped

truncated tetrahedron. Duals of F26 and F28 are also called

�-phase polyhedron and Friauf polyhedron.

A space fullerene is a simple tiling of E3 by any fullerenes

(possibly non-congruent and with curved faces). A Frank–

Kasper space fullerene or, for short, FK space fullerene, is a

3-periodic space fullerene, where any tile is isomorphic to one

of four Frank–Kasper polyhedra. In crystal chemistry their

duals are usually considered, introduced by Frank & Kasper

(1958, 1959) and since called Frank–Kasper structures or

Frank–Kasper phases, t.c.p. (tetrahedrally or topologically

close-packed) structures with coordination numbers 12, 14, 15,

16. Then vertices correspond to atoms and edges correspond

to atomic bonds. The terms t.c.p. and Frank–Kasper phase

are usually used in crystallography and materials science,

respectively. Frank–Kasper phases and McKay icosahedra

are major types of locally icosahedral complex intermetallic

compounds (Lord et al., 2006). In physical t.c.p. phases,

coordination numbers 12, 14, 15, 16 are dominating patterns,

but phases similar to FK exist, for example, in giant cell

structures. These Samson phases (Samson, 1968) can have,

in addition to four dual FK polyhedra and truncated

tetrahedra, other coordination polyhedra usually with

coordination numbers in [11, 16]. The notion of nesting of

fullerenes in Frank–Kasper phases is considered by Alvarez

(2006).

It was proposed by Frank (1952) that liquids are char-

acterized by icosahedral coordination, preventing easy crys-

tallization into close-packed structures. Sheng et al. (2006),

using sophisticated X-ray techniques, obtained detailed data

on many binary non-crystalline metallic materials. They found
Figure 1
The four fullerenes with isolated hexagons.



that Frank–Kasper polyhedra statistically predominate among

coordination polyhedra and Voronoi regions.

In Deza & Shtogrin (1999), a 3-periodic space fullerene,

which is not FK, was given. This DS space fullerene is a tiling

of E3 by F20, F24 and its elongation F36ðD6hÞ in proportion

7:2:1. In Deza & Shtogrin (2009), an infinite number of

1-periodic space fullerenes (with tiles F20, F24, F30, F36) were

constructed from any infinite non-periodic plane fullerene, i.e.

a 3-valent plane partition with 5- and 6-gonal faces only. In the

Reticular Chemistry Structure Resource (RCSR) database

(O’Keeffe et al., 2008), seven other 3-periodic space fullerenes,

which are not FK, are given; they are named odf, odg, odh, odi,

odj, odl and odm.

A DS space fullerene is similar to the 4-valent 3-periodic

tiling (also with symmetry P6=mmm) by F20, F 020 (instead of

F24) and the same F36 in the fraction 3:2:1 (here F 020 is the

‘twisted F20’, i.e. the 3-valent 20-vertex polyhedron, where

6-ring, alternating 4- and 6-gons, have three 5-gons inside and

three outside). It corresponds to metallic alloy CaCu5, clath-

rate of type H, zeolite topology DOH and clathrasil dodecasil

D1H.

FK space fullerenes occur in the following:

(i) 27 ordered t.c.p. phases of metallic alloys, where cells are

atoms; cf. Table 1.

(ii) Clathrates (compounds with one component, atomic or

molecular, enclosed in a framework of another), including

clathrate hydrates, where cells are solutes cavities, vertices are

H2O, edges are hydrogen bonds; clathrasils (silicate materials

with clathrate structure); and zeolites (hydrated microporous

aluminosilicate minerals), where vertices are tetrahedra SiO4

or SiAlO4, cells are H2O, and edges are oxygen bridges.

(iii) Soap froths (foams, liquid crystals).

(iv) An affine version of A15 gives (see Weaire & Phelan,

1994)1 a better [than Kelvin’s affine variation of body-

centered cubic (b.c.c.) = A�3] solution to the weak Kelvin

problem: partition E
3 into equal volume (not necessarily

congruent) cells D of minimal surface area, i.e. with maximal

IQ(D) = 36�V2=A3 (the lowest energy foam of equal bubbles).

Some other non-space-fullerene structures were found by

Gabrielli (2009).

For examples, see Sloan & Koh (2007), Jeffrey (1984) for

clathrate hydrates, Meier & Olson (1992) for zeolites, and

O’Keeffe & Hyde (1996) for crystal structures.

Especially important are FK space fullerenes A15 and C15.

They correspond to clathrate hydrates of type I, II; zeolite

topologies MEP, MTN; clathrasils melanophlogite, dodecasil

3C; and metallic alloys Cr3Si, MgCu2, respectively. Their unit

cells have, respectively, 46, 136 vertices and 8 (2 F20 and 6 F24),

24 (16 F20 and 8 F28) cells. The FK space fullerenes �, Z, C14

are dual to clathrate hydrates of type III, IV and V, respec-

tively.

A15 and C15 are also extremal in the following sense. For all

27 previously known physical FK space fullerenes, their

average coordination number f (mean number of faces per

cell in the fundamental domain) is within [13.(3), 13.5] and

mean face size of a cell q is within [5.1, 5.(1)]. Both lower

bounds are realized by C15, while upper ones are realized

by A15. In fact, Nelson & Spaepen (1989) conjectured

5:1 � q � 5:ð1Þ, i.e. 13:ð3Þ � f � 13:5 for any FK space full-

erene.

However, DS space fullerene has q = 56=11 ’ 5.091 and f =

13.2, the smallest to date. On the other hand, f = 13.(5) >

f ðA15Þ for three new FK space fullerenes [with fraction, i.e.

respective proportion of 20-, 24-, 26-, 28-vertex polyhedra, (3,

4, 2, 0)] found in this paper.

All previously known FK space fullerenes have fractions

which are linear combinations of those of A15, C15 and Z. This

was observed by Yarmolyuk & Kripyakevich (1974) for the 20

FK space fullerenes known in 1974. As a general conjecture,

this Yarmolyuk–Kripyakevich rule was motivated by Shoe-

maker & Shoemaker (1986), when 24 FK space fullerenes

were known. We obtained five counterexamples to this

conjecture.

Examples of non-Euclidean analogs of space fullerenes are

tilings of 3-sphere by F20 (120-cell) and of hyperbolic 3-space

by F24 (Löbell space), cf. for example, Vesnin (1989). Also, the

convex hull of vertices of the hexagonal plane tiling {63},

realized on a horosphere (regular honeycomb {633}), have

only 6-gonal 2-faces; its fundamental domain is not compact

but has finite volume.

In the RCSR database, the space fullerenes DS, C14, C15,

A15, Z, —, �, �, T are named mds, mgz-x-d, mtn, mep, zra-d,

muh, mur, sig and tei.

2. Explicit constructions

The major skeleton MajðT Þ of a space fullerene T is a graph

with the vertices being the cells of T and an edge between

vertices if the corresponding cells share a 6-gonal face. For

example, the A15 phase has an infinity of infinite paths going in

three different directions, while the Z structure has an infinity

of layers {63} stacked with an infinity of infinite paths passing

through the hexagons.

In Sadoc & Mosseri (1985, 1999) an inflation procedure is

described. Here we extend it slightly so that it takes one FK

space fullerene and returns another FK space fullerene. For

m � 3 call snub Prismm (or Löbell m-polyhedron) the 3-valent

plane graph with two m-gonal faces separated by two m-rings

of 5-gons. Of course, snub Prism5 is F20 and snub Prism6 is F24 ,

while snub Prism3 is the Dürer octahedron and snub Prism4 is

the dual bi-capped 4-antiprism. Given a simple tiling T by

cells P, we define the inflation IFMðT Þ to be the simple tiling

such that:

(i) Every cell P contains a shrunken copy P 0 of P in its

interior.

(ii) On every vertex of P there is an F28.

(iii) On every face of P 0 with m edges there is a snub Prismm

which is contained in P.

Keeping in mind that the newly created F28 are contained in

four different cells P, the operation IFM restricted to FK

space fullerenes gives
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F20 ! F20 þ 12F20 þ
20
4 F28;

F24 ! F24 þ f12F20 þ 2F24g þ
24
4 F28;

F26 ! F26 þ f12F20 þ 3F24g þ
26
4 F28;

F28 ! F28 þ f12F20 þ 4F24g þ
28
4 F28:

8>><
>>:

Thus if T is an FK space fullerene of fraction ðx20; x24; x26; x28Þ,

then IFMðT Þ is also an FK space fullerene of fraction

ðx020; x024; x026; x028Þ with

x020 ¼ 13x20 þ 12x24 þ 12x26 þ 12x28;
x024 ¼ 3x24 þ 3x26 þ 4x28;
x026 ¼ x26;
x028 ¼ 5x20 þ 6x24 þ

13
2 x26 þ 8x28:

8>><
>>:

The FK space fullerene IFMðA15Þ was given by Sadoc &

Mosseri (1985), where it was noticed that it has the same

average coordination number as the T phase; it is named tep

in the RCSR database. Every edge of the major skeleton of T

corresponds to a path of three edges in the major skeleton of

IFMðT Þ with two additional vertices coming from F24. The

other component of the major skeleton of IFMðT Þ is the

skeleton of T from the F28 placed at the vertices of T . A priori,

IFMðT Þ does not follow the Yarmolyuk–Kripyakevich rule. In

Fig. 2 we give IFMðA15Þ and the underlying cells.

In Deza & Shtogrin (2009) a construction of only 1-periodic

space fullerenes is described, which generalize Deza & Shto-

grin (1999). In order to extend it slightly, for any m � 3 let us

denote by BSPrismm the 3-valent plane graph obtained by

inserting the ring of m 6-gons in the middle of the rings of

5-gons of snub Prismm; its symmetry is Dmh. Take an infinite

3-valent plane graph G with faces of size m 2 M. The DS

construction DSðGÞ is a tessellation of the Euclidean space by

polyhedra snub Prismm, BSPrismm and F20: on each of the

two opposite m-gon of the polyhedron BSPrismm we put a

snub Prismm on each of two m-gonal faces. This structure is

stacked in infinite lines. The residual space is then filled with

F20. For the tessellation f63g by hexagons of the Euclidean

plane, the space fullerene DSðf63gÞ was found by Deza &

Shtogrin (1999) and is the first example found of a 3-periodic

space fullerene which is not an FK space fullerene. Later, the

properties of this space fullerene were discussed in detail by

Delgado-Friedrichs & O’Keeffe (2006) and all 3-periodic

space fullerenes with at most seven orbits of flags were clas-

sified. There are five types: A15, C15, Z, C14 and DS with

3, 3, 5, 7 and 7 orbits, respectively. In order for DSðGÞ to be a

space fullerene it is necessary and sufficient that G has faces of

size 5 or 6 only. The only periodic case is f63g but there are

some non-periodic structures if one takes a plane fullerene.

Then there are at most six 5-gonal faces as discussed by

Deza & Shtogrin (2009) and the number of possibilities is

countable.

In x2.2 of Frank & Kasper (1959) a construction of FK space

fullerenes is described, which is further described by Sullivan

(2000). In Sullivan’s description the input of the construction

is a tiling of the plane by regular triangles and squares and

the output is a 1-periodic space fullerene with x28 = 0, which

is shown to satisfy the Yarmolyuk–Kripyakevich rule. The

resulting space fullerene is 3-periodic if and only if the initial

plane tiling is 2-periodic. Another name for the construction is

hexagonal t.c.p. phases (Kuo et al., 1986); see also Fig. 3.

In Shoemaker & Shoemaker (1972) a method for gener-

ating FK space fullerenes, called pentagonal t.c.p., is given that

generalizes the generalized Laves phases of x2.1 of Frank &

Kasper (1959), the square-lozenge construction of Kuo et al.

(1986), and the previous constructions of Pearson & Shoe-

maker (1969), Shoemaker & Shoemaker

(1968) and Kripyakevich (1970). The

input of the construction is a plane tiling

by, not necessarily regular, quadrangles

and triangles with vertex configurations

ð36Þ, ð32; 4; 3; 4Þ, ð33; 42Þ, ð44Þ, ð35Þ, ð34; 4Þ

and ð35; 4Þ allowed. Some of the edges

are doubled, and the non-doubled edges

are colored red and blue so that:

(i) Every square contains exactly two

doubled edges on opposite sides.

(ii) Every triangle contains exactly

one double edge.

(iii) For every face the non-doubled

edges are of the same color.

(iv) If two faces share a black edge

then their color (red or blue) is the same

if and only if their sizes are different.
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Figure 2
The inflation on the A15 structure: the shrunken cells of A15 and the
generated F28.

Figure 3
The plane tilings corresponding to the physical space fullerenes with x28 = 0.



The paper by Shoemaker & Shoemaker (1972) contains a

detailed description of the obtained structures. Once the

doubled edges are chosen, the colored red/blue edge is

uniquely defined up to the color choice of one edge, and the

obtained FK space fullerene has x24 = x26. In Fig. 4 for each

such FK space fullerene we give a translation tile for the

corresponding plane tiling with the required doubled edges

indicated; edge colors are not given since they are easy to

obtain.

3. Computer computation method

The full enumeration of Frank–Kasper structures is a very

difficult problem. The above constructions show that some

non-3-periodic structures exist and that within the 3-periodic

framework there are a large variety of possible structures.

Thus it seems that a general mathematical description of all

space fullerenes is impossible and we consider instead the

subproblem of enumerating FK space fullerenes whose

fundamental domain is not too large. Here we consider only

the combinatorial problem; we do not distinguish between

structures if they can be perturbed without changing the

adjacencies between cells. Thus we provide a list of possible

combinatorial candidates that can be used to match some

physical structures or used as a starting point for some opti-

mization procedures such as, for example, the Kelvin problem

or Hamiltonian energy minimization.

A cell complex C is a family of cells with inclusion relation

such that the intersection of any two cells is either empty or a

single cell. A cell complex is pure of dimension 3 if the cells

that are maximal for inclusion have dimension 3. It is closed,

or has no boundary, if any two-dimensional cell is contained in
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Figure 4
The list of graphs representing FK space fullerenes described as pentagonal t.c.p. For physical phases the name is indicated. For new space fullerenes with
known fraction we give the name Ex-structure with x the entry in Fig. 6 and Table 2. For new space fullerenes with new fraction we give the name Nx-
structure with x the entry in Fig. 7 and Table 3.



two three-dimensional cells. For short, a C3-complex is a

closed pure three-dimensional cell complex.

Given a Frank–Kasper structure F , we associate the C3-

complex defined by the inclusion between vertices, edges,

triangles and tetrahedra. If a structure is periodic and the

number of vertices per unit cell is specified, then the list of

possible candidates is finite and can actually be enumerated on

a computer for a fixed size. However, a key problem occurs:

how can one recognize whether a C3-complex arises from

a Euclidean tiling? This problem is related to difficult

questions of topology of three-dimensional manifolds which,

in practice, are solved efficiently by the program 3dt

(Delgado-Friedrichs, 2000a) implemented from Delgado-

Friedrichs (1990).

We find it easier to deal with the enumeration problem of

FK space fullerenes instead of their dual, i.e. Frank–Kasper

structures. The combinatorial objects we are looking for are

the infinite periodic tilings of the Euclidean space E3 by those

four polyhedra.

In order to reduce the size of a combinatorial enumeration

problem, a common method is to work with the quotient

manifold of E3 by the group G of combinatorial symmetries of

the space. We can describe combinatorially any tiling of E3 by

vertices, edges, faces and cells with their incidence relations.

However, this is not always possible in the quotient. If the

group is only made of translations and the fundamental

domain is sufficiently large, then the incidence method also

works. But suppose that one takes the tiling of E3 by unit

cubes; then we have in the quotient only one vertex, edge, face

and cell, and this is clearly insufficient. An efficient system

for working in this context, named the Delaney symbol,

has been devised (see Dress, 1987; Delgado-Friedrichs et al.,

1995).

A flag f in a C3-complex is a sequence ðF0; F1;F2;F3Þ of

faces with Fi � Fiþ1. If 0 � i � 3, then the flag �ið f Þ is the one

differing from f only in the dimension i. Suppose C is a C3-

complex, with a group G acting on it. The Delaney symbol of C

with respect to G is a combinatorial object containing:

(i) The orbits Ok of complete flags under G.

(ii) The action of �i on those orbits for 0 � i � d.

(iii) For each orbit Ok and integers 0 � i< j � d the

number mi;jðkÞ, which is the smallest m > 0 such that

ð�i�jÞ
m
ð f Þ = f for all f 2 Ok.

The quotient CG is an orbifold. If G = AutðCÞ, we speak

simply of the Delaney symbol of C. A consequence of Dress

(1987) is that a periodic tiling is uniquely described by its

Delaney symbol. The key point of this theorem is that E3 is

simply connected.

Several works have been carried out towards direct

enumeration of the Delaney symbol in order to obtain
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Table 1
List of known physical space fullerenes.

For each such FK space fullerene we give the name of the phase, a representative alloy, the space group, the number of cells in a fundamental domain, the average
coordination number, the fraction sequence, the partition of cells into orbits and a description of the major skeleton.

No. Phase
Representative
alloy Group

Fundamental
domain f Fraction Cell orbits Major skeleton

1 C14 MgZn2 P63=mmc 12 13:333 ð2; 0; 0; 1Þ ð82;6; 0; 0; 44Þ ð0; 0; 4Þ
2 C15 MgCu2 Fd3m 6� 4 13:333 ð2; 0; 0; 1Þ ð1616; 0; 0; 88Þ ð0; 0; 2Þ
3 C36 MgNi2 P63=mmc 24 13:333 ð2; 0; 0; 1Þ ð164;62 ; 0; 0; 842 Þ ð0; 0; 8Þ
4 6-layers MgCuNi P63=mmc 36 13:333 ð2; 0; 0; 1Þ ð2412;2;4;6; 0; 0; 1243 Þ ð0; 0; 12Þ
5 8-layers MgZn2 þ 0:03MgAg2 P63=mmc 48 13:333 ð2; 0; 0; 1Þ ð3212;42 ;62 ; 0; 0; 1644 Þ ð0; 0; 16Þ
6 9-layers MgZn2 þ 0:07MgAg2 R3m 18� 3 13:333 ð2; 0; 0; 1Þ ð3618;3;6;9; 0; 0; 1863 Þ ð0; 0; 6Þ
7 10-layers MgZn2 þ 0:1MgAg2 P63=mmc 60 13:333 ð2; 0; 0; 1Þ ð40122 ;2;42 ;6; 0; 0; 2045 Þ ð0; 0; 20Þ
8 mz Mg4Zn7 C2=m 55� 2 13:345 ð35; 2; 2; 16Þ ð702;49 ;84 ; 44; 44; 3248 Þ ð2; 2; 16Þ
9 X Mn45Co40Si15 Pnnm 74 13:351 ð23; 2; 2; 10Þ ð462;45 ;83 ; 44; 44; 2045 Þ ð4; 4; 20Þ

10 T Mg32ðZn;AlÞ49 Im3 81� 2 13:358 ð49; 6; 6; 20Þ ð982;242 ;48; 1212; 1212; 4016;24Þ ð6; 6; 20Þ
11 C V2ðCo; SiÞ3 C2=m 25� 2 13:360 ð15; 2; 2; 6Þ ð302;43 ;82 ; 44; 44; 1243 Þ ð2; 2; 6Þ
12 zra-d K7Cs6 P63=mmc 26 13:384 ð7; 2; 2; 2Þ ð1412;2; 44; 422 ; 44Þ ð4; 0; 4Þ; 2Zð0; 2; 0Þ
13 p� Th6Cd7 Pbam 26 13:384 ð7; 2; 2; 2Þ ð142;4;8; 44; 44; 44Þ 2ð2; 2; 2Þ
14 � Mo6Co7 R3m 13� 3 13:384 ð7; 2; 2; 2Þ ð2118;3; 66; 66; 66Þ ð2; 0; 2Þ;Zð0; 2; 0Þ
15 M Nb48Ni39Al13 Pnma 52 13:384 ð7; 2; 2; 2Þ ð2843;82 ; 842 ; 842 ; 842 Þ 2ð4; 4; 4Þ
16 R Mo31Co51Cr18 R3 53� 3 13:396 ð27; 12; 6; 8Þ ð81184 ;3;6; 36182 ; 1818; 2418;6Þ ð12; 6; 8Þ
17 K Mn77Fe4Si19 C2 55� 2 13:418 ð25; 19; 4; 7Þ ð502;412 ; 382;49 ; 842 ; 142;43 Þ ð5; 2; 1Þ; ð6; 0; 2Þ; ð8; 2; 4Þ
18 Z Zr4Al3 P6=mmm 7 13:428 ð3; 2; 2; 0Þ ð33; 22; 22; 0Þ Zð0; 2; 0Þ;Z2

ð2; 0; 0Þ
19 P Mo42Cr18Ni40 Pnma 56 13:428 ð6; 5; 2; 1Þ ð2444;8; 2043 ;8; 842 ; 44Þ 2ð6; 4; 2Þ; 4Z2

ð2; 0; 0Þ
20 � MoNi P212121 56 13:428 ð6; 5; 2; 1Þ ð2446 ; 2045 ; 842 ; 44Þ 4ð5; 2; 1Þ
21 � Mn81:5Si18:5 Immm 93� 2 13:440 ð37; 40; 10; 6Þ ð7416;2;42;86 ; 8016;42 ;87 ; 2043;8; 124;8Þ ð10; 8; 2Þ; ð12; 2; 4Þ;

9Z2
ð2; 0; 0Þ

22 Jcomp Complex Pmmm 22 13:454 ð4; 5; 2; 0Þ ð812 ;2;4; 1023 ;4; 422 ; 0Þ Zð2; 4; 0Þ; 4Z2
ð2; 0; 0Þ

23 Fcomp Complex P6=mmm 52 13:461 ð9; 13; 4; 0Þ ð1863 ; 2612;2;62 ; 82;6; 0Þ Zð6; 2; 0Þ;Zð6; 6; 0Þ;
7Z2
ð2; 0; 0Þ

24 Kcomp Complex Pmmm 82 13:463 ð14; 21; 6; 0Þ ð2812;23;45 ; 4223 ;47 ;8; 1224 ;4; 0Þ Zð10; 4; 0Þ;Zð10; 8; 0Þ;
11Z2
ð2; 0; 0Þ

25 Hcomp Complex Cmmm 15� 2 13:466 ð5; 8; 2; 0Þ ð102;42 ; 1642 ;8; 44; 0Þ Zð2; 2; 0Þ; 3Z2
ð2; 0; 0Þ

26 � Cr46Fe54 P42=mnm 30 13:466 ð5; 8; 2; 0Þ ð102;8; 1682 ; 44; 0Þ 2Zð4; 2; 0Þ; 4Z2
ð2; 0; 0Þ

27 A15 Cr3Si Pm3n 8 13:500 ð1; 3; 0; 0Þ ð22; 66; 0; 0Þ 3Z2
ð2; 0; 0Þ
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Figure 5
Known physical space fullerenes.



periodic tilings (see Delgado-Friedrichs, 2000b; Delgado-

Friedrichs et al., 2006; Delgado-Friedrichs & O’Keeffe, 2007).

Since in our case we do not have any symmetry assumptions,

we cannot derive full enumeration results. A similar work

is the enumeration in Delgado-Friedrichs & O’Keeffe (2006)

of the space fullerenes with at most seven orbits of flags.

However, in the case of FK space fullerenes it is difficult to

impose the specific type of the obtained cells. So, instead of

enumerating Delaney symbols, we enumerate orientable finite

C3-complexes, whose maximal cells are Frank–Kasper poly-

hedra.

A graph is 3-connected if, after removing any two vertices of

it, it remains connected. It is well known that 3-connected

graphs admit at most one realization as plane graphs. The

Frank–Kasper polyhedra are 3-connected, so we can encode

a C3-complex whose cells are Frank–Kasper polyhedra

by pairs ðF0;F3Þ instead of flags ðF0;F1;F2; F3Þ for Delaney

symbols.

Two restrictions are made on the C3-complexes that we

enumerate: we assume orientability and that no cell has a self-

adjacency, but multiple adjacencies are allowed. Those two

restrictions give additional speed but limit a priori the

complexes we can obtain. We cannot exclude that some FK

space fullerenes with less than 20 cells per fundamental

domain have been missed, though this is unlikely.

The enumeration algorithm is a simple tree search of all

possibilities. We add cells one by one and we keep track of the

faces that are contained in only one cell for which further cells

have to be added. The program returns a list of orientable

manifolds ~MM and we test whether their universal covering M is

the Euclidean space E3 using 3dt. The manifold ~MM is not

necessarily a three-dimensional torus; the reason for this is

that in dimension 3 there exist ten groups (called Bieberbach

groups) whose elements different from identity do not fix any

point, and thus ten different 3-manifolds whose universal

cover is the Euclidean plane. Six of those manifolds are

orientable and there are thus six possible Bieberbach sub-

groups of the automorphism groups of the obtained manifold

that can be factored out in the computation. This explains why

we can obtain some FK space fullerenes with large funda-

mental domains: their symmetry group is big and thus the

manifold ~MM is small.

The computer search was a large-scale computation lasting

months. Experimentally, we found out that if we increase the

number n of cells in the fundamental domain reduced by

the Bieberbach group action by 1 then the running time is

multiplied by a factor between 2 and 3. We use parallel

computers for subdividing the tree search into a number of

independent runs. One possibility which we have not consid-

ered is to use symmetries to reduce the running time. This

could potentially divide the running time by a significant

factor but it would not change the fact that as n grows the

growth of the computation is at least exponential.

4. Description of obtained structures

The fraction sequence ð1; 3; 0; 0Þ is unique, i.e. there is a

unique space fullerene A15 with this fraction. The FK space
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Figure 5 (continued)



fullerenes with fraction ð2; 0; 0; 1Þ are called Laves space

fullerenes. A continuum of them exists but, for energetic

reasons, only short layer stackings are found in real systems.

Their physical realizations, Laves phases (or, to specify main

contributors, Friauf–Laves–Komura phases), are chemically

intermetallic FK compounds with the approximate formula

AB2 where atom A ’ ð3=2Þ1=2 larger; there are about 1400 of

them (see Thoma, 2001).
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Figure 6
New space fullerenes with known fraction.

Table 2
List of new space fullerenes with known fraction.

For each such FK space fullerene we give the space group, the number of cells in a fundamental domain, the average coordination number, the fraction sequence,
the partition of cells into orbits and a description of the major skeleton.

No. Group
Fundamental
domain f Fraction Cell orbits Major skeleton

1 Cmmm 13� 2 13:384 ð7; 2; 2; 2Þ ð142;4;8; 44; 44; 44Þ ð0; 2; 2Þ;Z2
ð2; 0; 0Þ

2 Cmcm 26� 2 13:384 ð7; 2; 2; 2Þ ð2843;82 ; 88; 88; 88Þ ð0; 4; 4Þ; 2Z2
ð2; 0; 0Þ

3 Cmca 14� 2 13:428 ð3; 2; 2; 0Þ ð124;8; 88; 88; 0Þ 2Zð2; 2; 0Þ
4 Cmca 28� 2 13:428 ð3; 2; 2; 0Þ ð2483 ; 1682 ; 1682 ; 0Þ 2Zð4; 4; 0Þ
5 Cmcm 28� 2 13:428 ð3; 2; 2; 0Þ ð2416;42 ; 1642 ;8; 1642 ;8; 0Þ Zð0; 4; 0Þ; 2Zð2; 2; 0Þ;Z2

ð4; 0; 0Þ
6 I4m2 14� 2 13:428 ð6; 5; 2; 1Þ ð124;8; 102;8; 44; 22Þ ð1; 2; 1Þ; 2Z2

ð2; 0; 0Þ
7 P21212 28 13:428 ð6; 5; 2; 1Þ ð1243 ; 102;42 ; 44; 22Þ 2Z=2Zð5; 2; 1Þ
8 Cmc21 28� 2 13:428 ð6; 5; 2; 1Þ ð2444;8; 2043 ;8; 842 ; 44Þ ð6; 4; 2Þ; 2Z2

ð2; 0; 0Þ
9 Cmc21 28� 2 13:428 ð6; 5; 2; 1Þ ð2444;8; 2043 ;8; 842 ; 44Þ 2ð3; 2; 1Þ; 2Z2

ð2; 0; 0Þ
10 P212121 56 13:428 ð6; 5; 2; 1Þ ð2446 ; 2045 ; 842 ; 44Þ 2ð10; 4; 2Þ
11 I41=amd 22� 2 13:454 ð4; 5; 2; 0Þ ð1682 ; 2016;4; 88; 0Þ ð2; 4; 0Þ; 4Z2

ð2; 0; 0Þ



The vectors v120 = (1, 0, 0, 0),vA15 = (1, 3, 0, 0),vZ = (3, 2, 2, 0),

vC15 = (2, 0, 0, 1) being linearly independent, any vector x [let

us denote it (x20, x24, x26, x28)] is a linear combination a0v120 +

a1vA15 + a2vZ + a3vC15. In these terms, the Yarmolyuk–

Kripyakevich conjecture is equivalent to saying that if x is the

fraction sequence of the FK phase then a0 = 0, or, equivalently,

6x20 � 2x24 � 7x26 � 12x28 = 0.
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Table 3
List of other new space fullerenes.

For each such FK space fullerene we give the space group, the number of cells in a fundamental domain, the average coordination number, the fraction sequence,
the partition of cells into orbits and a description of the major skeleton.

No. Group
Fundamental
domain f Fraction Cell orbits Major skeleton

1 Pmmn 38 13:368 ð11; 1; 4; 3Þ ð222;43 ;8; 22; 822 ;4; 62;4Þ ð2; 4; 6Þ;Zð0; 4; 0Þ
2 P6m2 19 13:368 ð11; 2; 2; 4Þ ð112;3;6; 22; 212 ; 422 Þ ð2; 0; 4Þ;Zð0; 2; 0Þ
3 P63=mmc 38 13:368 ð11; 2; 2; 4Þ ð2212;4;6; 44; 44; 842 Þ ð4; 0; 8Þ; 2Zð0; 2; 0Þ
4 P63=mmc 38 13:368 ð11; 2; 2; 4Þ ð2212;4;6; 44; 422 ; 842 Þ ð4; 0; 8Þ; 2Zð0; 2; 0Þ
5 Cmmm 19� 2 13:368 ð11; 2; 2; 4Þ ð222;4;82 ; 44; 44; 842 Þ ð0; 2; 4Þ;Z2

ð2; 0; 0Þ
6 Immm 19� 2 13:368 ð11; 2; 2; 4Þ ð222;4;82 ; 44; 44; 88Þ ð0; 2; 4Þ;Z2

ð2; 0; 0Þ
7 Pmmn 38 13:368 ð11; 2; 2; 4Þ ð222;45 ; 44; 44; 822;4Þ ð0; 4; 8Þ; 2Z2

ð2; 0; 0Þ
8 Pmma 38 13:368 ð11; 2; 2; 4Þ ð2225 ;43 ; 44; 44; 842 Þ ð0; 4; 8Þ; 2Z2

ð2; 0; 0Þ
9 R3m 19� 3 13:368 ð11; 2; 2; 4Þ ð3318;6;9; 66; 66; 1262 Þ ð2; 0; 4Þ;Zð0; 2; 0Þ

10 P3221 57 13:368 ð11; 2; 2; 4Þ ð333;65 ; 66; 632 ; 1262 Þ ð6; 6; 12Þ
11 Cmcm 38� 2 13:368 ð11; 2; 2; 4Þ ð4416;4;83 ; 88; 88; 1642 ;8Þ ð0; 4; 8Þ; 2Z2

ð2; 0; 0Þ
12 Cmc21 38� 2 13:368 ð11; 2; 2; 4Þ ð4445 ;83 ; 842 ; 842 ; 1644 Þ ð4; 4; 8Þ
13 P42=mmc 32 13:375 ð9; 2; 2; 3Þ ð182;82 ; 44; 44; 62;4Þ ð0; 4; 6Þ; 2Z2

ð2; 0; 0Þ
14 P42=mmc 20 13:400 ð5; 2; 2; 1Þ ð102;8; 44; 44; 22Þ ð0; 4; 2Þ; 2Z2

ð2; 0; 0Þ
15 P12=m1 20 13:400 ð5; 2; 2; 1Þ ð1012 ;22 ;4; 422 ; 422 ; 22Þ ð2; 4; 2Þ;Z2

ð2; 0; 0Þ
16 P63=mmc 40 13:400 ð5; 2; 2; 1Þ ð2012;2;6; 842 ; 842 ; 44Þ ð8; 0; 4Þ; 4Zð0; 2; 0Þ
17 Imma 20� 2 13:400 ð5; 2; 2; 1Þ ð2043 ;8; 88; 842 ; 44Þ ð0; 4; 2Þ; 2Z2

ð2; 0; 0Þ
18 Cmcm 20� 2 13:400 ð5; 2; 2; 1Þ ð204;82 ; 88; 88; 44Þ Z=3Zð4; 4; 2Þ
19 Pmna 40 13:400 ð5; 2; 2; 1Þ ð2022 ;42 ;8; 842 ; 842 ; 44Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
20 Pmna 40 13:400 ð5; 2; 2; 1Þ ð2022 ;44 ; 842 ; 842 ; 44Þ ð8; 8; 4Þ
21 Pbam 40 13:400 ð5; 2; 2; 1Þ ð2043 ;8; 842 ; 842 ; 44Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
22 Ima2 20� 2 13:400 ð5; 2; 2; 1Þ ð2043 ;8; 842 ; 842 ; 44Þ ð2; 4; 2Þ;Z2

ð2; 0; 0Þ
23 Pnma 40 13:400 ð5; 2; 2; 1Þ ð2043 ;8; 842 ; 842 ; 44Þ Z=3Zð8; 8; 4Þ
24 Pmma 40 13:400 ð5; 2; 2; 1Þ ð2022 ;42 ;8; 842 ; 822;4; 44Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
25 Pmc21 40 13:400 ð5; 2; 2; 1Þ ð2026 ;42 ; 822 ;4; 824 ; 422 Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
26 Pmc21 40 13:400 ð5; 2; 2; 1Þ ð2026 ;42 ; 822 ;4; 824 ; 422 Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
27 R3m 20� 3 13:400 ð5; 2; 2; 1Þ ð3018;3;9; 1262 ; 1262 ; 66Þ ð4; 0; 2Þ; 2Zð0; 2; 0Þ
28 P6222 60 13:400 ð5; 2; 2; 1Þ ð3012;63 ; 1212; 1262 ; 66Þ ð12; 6; 6Þ; 3Zð0; 2; 0Þ
29 P3221 60 13:400 ð5; 2; 2; 1Þ ð3032 ;64 ; 1262 ; 1262 ; 66Þ ð12; 12; 6Þ
30 Fmmm 20� 4 13:400 ð5; 2; 2; 1Þ ð40162 ;8; 1616; 1682 ; 88Þ Zð0; 2; 0Þ;Z=2Zð4; 2; 2Þ
31 Cmcm 40� 2 13:400 ð5; 2; 2; 1Þ ð4042 ;84 ; 1682 ; 1642;8; 88Þ ð0; 8; 4Þ; 4Z2

ð2; 0; 0Þ
32 Cmcm 40� 2 13:400 ð5; 2; 2; 1Þ ð4044 ;83 ; 1682 ; 1682 ; 88Þ ð0; 8; 4Þ; 4Z2

ð2; 0; 0Þ
33 Cmc21 40� 2 13:400 ð5; 2; 2; 1Þ ð4046 ;82 ; 1642;8; 1644 ; 842 Þ ð4; 8; 4Þ; 2Z2

ð2; 0; 0Þ
34 Cccm 20� 2 13:400 ð5; 3; 0; 2Þ ð204;82 ; 124;8; 0; 88Þ ð4; 0; 4Þ;Z2

ð2; 0; 0Þ
35 Pmna 40 13:400 ð5; 3; 0; 2Þ ð2022 ;44 ; 1243 ; 0; 842 Þ ð8; 0; 8Þ; 2Z2

ð2; 0; 0Þ
36 Pmma 40 13:400 ð5; 3; 0; 2Þ ð2024 ;43 ; 1243 ; 0; 842 Þ ð4; 0; 8Þ; 2Z2

ð2; 0; 0Þ;Z2
ð4; 0; 0Þ

37 Cmcm 40� 2 13:400 ð10; 3; 6; 1Þ ð4016;42;82 ; 124;8; 2442 ;82 ; 44Þ ð2; 8; 2Þ;Zð0; 4; 0Þ; 2Z2
ð2; 0; 0Þ

38 Cmc21 40� 2 13:400 ð10; 3; 6; 1Þ ð4044 ;83 ; 1243 ; 2446 ; 44Þ ð6; 12; 2Þ
39 C2221 40� 2 13:400 ð10; 3; 6; 1Þ ð4042 ;84 ; 124;8; 2483 ; 44Þ ð6; 12; 2Þ
40 P4m2 20 13:400 ð10; 5; 2; 3Þ ð102;42 ; 51;4; 22; 31;2Þ ð1; 2; 3Þ; 2Z2

ð2; 0; 0Þ
41 Pmn21 40 13:400 ð10; 5; 2; 3Þ ð2026 ;42 ; 1023;4; 422 ; 623 Þ ð6; 4; 6Þ; 2Z2

ð2; 0; 0Þ
42 Pmn21 40 13:400 ð10; 5; 2; 3Þ ð2026 ;42 ; 1023;4; 422 ; 623 Þ ð6; 4; 6Þ; 2Z2

ð2; 0; 0Þ
43 Pmc21 40 13:400 ð10; 5; 2; 3Þ ð2026 ;42 ; 1023;4; 422 ; 623 Þ ð6; 4; 6Þ; 2Z2

ð2; 0; 0Þ
44 Cmc21 40� 2 13:400 ð10; 5; 2; 3Þ ð4046 ;82 ; 2043;8; 842 ; 1243 Þ ð6; 4; 6Þ; 2Z2

ð2; 0; 0Þ
45 Cmc21 40� 2 13:400 ð10; 5; 2; 3Þ ð4046 ;82 ; 2043;8; 842 ; 1243 Þ ð6; 4; 6Þ; 2Z2

ð2; 0; 0Þ
46 I41=amd 34� 2 13:411 ð8; 4; 4; 1Þ ð3216;82 ; 1616; 1682 ; 44Þ ð0; 8; 2Þ; 4Z2

ð2; 0; 0Þ
47 I41=amd 34� 2 13:411 ð8; 4; 4; 1Þ ð32162 ; 1616; 1616; 44Þ ð0; 8; 0Þ;Z=3Zð8; 0; 2Þ
48 I41=amd 34� 2 13:411 ð8; 5; 2; 2Þ ð3216;82 ; 2016;4; 88; 88Þ ð2; 4; 4Þ; 4Z2

ð2; 0; 0Þ
49 I4122 34� 2 13:411 ð8; 5; 2; 2Þ ð3216;82 ; 2016;4; 88; 88Þ ð2; 4; 0Þ; ð8; 0; 4Þ
50 Cmma 14� 2 13:428 ð3; 3; 0; 1Þ ð124;8; 124;8; 0; 44Þ Z=2Zð4; 0; 2Þ;Z2

ð2; 0; 0Þ
51 Pmna 28 13:428 ð3; 3; 0; 1Þ ð1222 ;42 ; 1243 ; 0; 44Þ ð8; 0; 4Þ; 2Z2

ð2; 0; 0Þ
52 Cmcm 28� 2 13:428 ð3; 3; 0; 1Þ ð2442 ;82 ; 2483 ; 0; 88Þ ð4; 0; 4Þ; 2Z2

ð2; 0; 0Þ;Z2
ð4; 0; 0Þ

53 P42=mmc 36 13:444 ð7; 7; 4; 0Þ ð142;4;8; 142;4;8; 842 ; 0Þ ð2; 8; 0Þ; 6Z2
ð2; 0; 0Þ

54 P42=mmc 36 13:444 ð7; 8; 2; 1Þ ð142;4;8; 1642;8; 44; 22Þ ð4; 4; 2Þ; 6Z2
ð2; 0; 0Þ

55 P43212 60 13:466 ð7; 4; 2; 2Þ ð284;83 ; 1682 ; 88; 88Þ 4Zð4; 2; 2Þ
56 I41=amd 38� 2 13:473 ð6; 11; 2; 0Þ ð2483 ; 44162 ;4;8; 88; 0Þ ð6; 4; 0Þ; 8Z2

ð2; 0; 0Þ
57 P42=mnm 32 13:500 ð3; 3; 2; 0Þ ð124;8; 124;8; 842 ; 0Þ 2Zð0; 2; 0Þ; 2Z2

ð6; 2; 0Þ
58 P42=mnm 18 13:555 ð3; 4; 2; 0Þ ð62;4; 88; 44; 0Þ 2Z2

ð4; 2; 0Þ
59 Pccn 36 13:555 ð3; 4; 2; 0Þ ð124;8; 1642;8; 88; 0Þ 2Zð8; 4; 0Þ
60 P6422 54 13:555 ð3; 4; 2; 0Þ ð1832 ;62 ; 24122 ; 1262 ; 0Þ 3Z� Z=3Zð4; 2; 0Þ; 3Z2

ð4; 2; 0Þ
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Figure 7
Other new space fullerenes.
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Figure 7 (continued)
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Now, if a fraction sequence satisfies the Yarmolyuk–

Kripyakevich conjecture, then

x24

3
þ x26 þ

5x28

3
� x20 �

x24

2
þ

5x26

4
þ 2x28

holds, i.e. the mean face size q belongs to [5.1, 5.(1)].

Furthermore, the equality cases are realized uniquely by

Laves and A15 phases (in lower and upper bounds, respec-

tively).

The fractions (7, 4, 2, 2), (3, 3, 2, 0), (3, 4, 2, 0) (see Table 3)

are counterexamples to the Yarmolyuk–Kripyakevich rule.

They are of mean face number 	5.1089, 5.(1) or 	5.1148, i.e.

within the range [5.1, 5.(1)], outside of it, or exactly

on the border. So, three structures with fraction (3, 4, 2, 0)

are counterexamples to a weakening of the Yarmolyuk–

Kripyakevich conjecture (Nelson & Spaepen, 1989) that

q � 5:ð1Þ, or, equivalently, that f � 13:5. Note that the

fraction (3, 3, 2, 0) is uniquely found with f = 13.5 besides

(1, 3, 0, 0) of A15.

The value 110 for phase K in Table 1 differs from N = 220 in

Shoemaker & Shoemaker (1986), where a superstructure was

considered. We also give different correct groups for struc-

tures M and P.

Two of 16 obtained new fractions, ð3; 3; 0; 1Þ and ð5; 3; 0; 2Þ

(see Table 3), are counterexamples to the condition given by

Hellner & Pearson (1986) that x28; x24 > 0 implies x26 > 0.

On a positive note, none of the obtained 23 fractions (seven

known and 16 new ones) violated the lower bounds of Nelson

& Spaepen’s (1989) conjecture: q � 5:1, i.e. f � 13:ð3Þ. Also,

we always have x20 > 0 and x20 �maxðx24=3, 3x26=2, 2x28). For

all 23 fractions found, except ð2; 0; 0; 1Þ, it holds that x24 > 0.

There are 27 known physical FK space fullerenes (see, for

example, Rivier & Aste, 1996). Some reported FK phases were

not included in the listing because of incompleteness of

defining data on them: the C1 phase (Wang et al., 1986) and

four Laves phases, namely, 16-, 21-layers (Komura & Kitano,

1977), 12-layers (Kitano et al., 1998) and rhombohedral

(Dwight & Kimball, 1974). We attribute name mz to the

structures of Mg4Zn7 which were previously unnamed. The

structure odk in the RCSR database corresponds to structure

number 58 in Table 3.

It is interesting that, among all obtained space fullerenes

with x28 = 0, those which are described in terms of hexagonal

t.c.p. structures, i.e. from the Frank, Kasper and Sullivan

construction, are exactly those which are physically realized.

The list of known physical space fullerenes is given in

Table 1 and Fig. 5. The list of new space fullerenes whose

fraction sequences are known is given in Table 2 and Fig. 6.

The list of new space fullerenes with new fraction sequences is

given in Table 3 and Fig. 7. A .cgd text file description of the

new structures is available as two supplementary files.2 The

crystallographic fundamental domain is obtained by putting

together m copies of the mathematical fundamental domain

(which tile the space under translation of the space group). We

give the number N of cells in the mathematical fundamental

domain if m = 1 and N �m if m > 1. We give the decom-

position of the set of cells in the mathematical fundamental

domain into orbits under the space group. The major skeleton

is computed for all space fullerenes given in the tables.

Vertices corresponding to F20 are discarded since they are

isolated. The partial fractions ðx24; x26; x28Þ of the connected

components are given, together with the number of compo-

nents of this type if finite. If a Z is put as prefix, then there

exists a translation vector v of the space group such that

all translations give distinct components of the major

skeleton. If a Z=pZ is put as prefix, then there is a translation

of vector v of the space group such that the translations by

0, v; . . . ; ðp� 1Þv are all distinct but the translation under

pv is a symmetry of this component of the major skeleton.

A priori, it is possible to have T 1 and T 2 non-isomorphic

and MajðT 1Þ isomorphic to MajðT 2Þ but we did not find a

single example of such pairs in the list of previously known

and obtained space fullerenes. One possibility, which we have

not considered for the enumeration process, is to build first

the major skeleton or a component of it and then consider

the addition of F20 in all possible ways. Based on all the known

structures it seems reasonable to conjecture that any

3-periodic space fullerene has at least one dodecahedron in its

structure and that its average coordination number and mean

face size are larger than those of the DS space fullerene.

Another problem that we did not consider is whether or

not the generated FK space fullerenes have faces that are

contained in affine planes. Some of the obtained FK space

fullerenes are very different from the known physical struc-

tures, for example, by having no apparent layering. It might be

interesting to search for more infinite series of FK space

fullerenes.
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